Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia

Nikolay Vadimovich Kukushkin, Sidney Paulina Williams, Thomas James Carew

Research output: Contribution to journalArticlepeer-review

Abstract

Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.

Original languageEnglish (US)
Article number14379
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia'. Together they form a unique fingerprint.

Cite this