TY - JOUR
T1 - Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism
AU - Sabri, Abdelkarim
AU - Alcott, Sasha G.
AU - Elouardighi, Hasnae
AU - Pak, Elena
AU - Derian, Claudia
AU - Andrade-Gordon, Patricia
AU - Kinnally, Kathleen
AU - Steinberg, Susan F.
PY - 2003/7/27
Y1 - 2003/7/27
N2 - Cathepsin G is a neutrophil-derived serine protease that contributes to tissue damage at sites of inflammation. The actions of cathepsin G are reported to be mediated by protease-activated receptor (PAR)-4 (a thrombin receptor) in human platelets. This study provides the first evidence that cathepsin G promotes inositol 1,4,5-trisphosphate accumulation, activates ERK, p38 MAPK, and AKT, and decreases contractile function in cardiomyocytes. Because some cathepsin G responses mimic cardiomyocyte activation by thrombin, a role for PARs was considered. Cathepsin G markedly activates phospholipase C and p38 MAPK in cardiomyocytes from PAR-1-/- mice, but it fails to activate phospholipase C, ERK, p38 MAPK, or AKT in PAR-1- or PAR-4-expressing PAR-1-/- fibroblasts (which display robust responses to thrombin). These results argue that PAR-1 does not mediate the actions of cathepsin G in cardiomyocytes, and neither PAR-1 nor PAR-4 mediates the actions of cathepsin G in fibroblasts. Of note, prolonged incubation of cardiomyocytes with cathepsin G results in the activation of caspase-3, cleavage of FAK and AKT, sarcomeric disassembly, cell rounding, cell detachment from underlying matrix, and morphologic features of apoptosis. Inhibition of Src family kinases or caspases (with PP1 or benzyloxycarbonyl-VAD-fluoromethyl ketone, respectively) delays FAK and AKT cleavage and cardiomyocyte detachment from substrate. Collectively, these studies describe novel cardiac actions of cathepsin G that do not require PARs and are predicted to assume functional importance at sites of interstitial inflammation in the heart.
AB - Cathepsin G is a neutrophil-derived serine protease that contributes to tissue damage at sites of inflammation. The actions of cathepsin G are reported to be mediated by protease-activated receptor (PAR)-4 (a thrombin receptor) in human platelets. This study provides the first evidence that cathepsin G promotes inositol 1,4,5-trisphosphate accumulation, activates ERK, p38 MAPK, and AKT, and decreases contractile function in cardiomyocytes. Because some cathepsin G responses mimic cardiomyocyte activation by thrombin, a role for PARs was considered. Cathepsin G markedly activates phospholipase C and p38 MAPK in cardiomyocytes from PAR-1-/- mice, but it fails to activate phospholipase C, ERK, p38 MAPK, or AKT in PAR-1- or PAR-4-expressing PAR-1-/- fibroblasts (which display robust responses to thrombin). These results argue that PAR-1 does not mediate the actions of cathepsin G in cardiomyocytes, and neither PAR-1 nor PAR-4 mediates the actions of cathepsin G in fibroblasts. Of note, prolonged incubation of cardiomyocytes with cathepsin G results in the activation of caspase-3, cleavage of FAK and AKT, sarcomeric disassembly, cell rounding, cell detachment from underlying matrix, and morphologic features of apoptosis. Inhibition of Src family kinases or caspases (with PP1 or benzyloxycarbonyl-VAD-fluoromethyl ketone, respectively) delays FAK and AKT cleavage and cardiomyocyte detachment from substrate. Collectively, these studies describe novel cardiac actions of cathepsin G that do not require PARs and are predicted to assume functional importance at sites of interstitial inflammation in the heart.
UR - http://www.scopus.com/inward/record.url?scp=0037592155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037592155&partnerID=8YFLogxK
U2 - 10.1074/jbc.M302718200
DO - 10.1074/jbc.M302718200
M3 - Article
C2 - 12707281
AN - SCOPUS:0037592155
SN - 0021-9258
VL - 278
SP - 23944
EP - 23954
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 26
ER -