Abstract
Nonlinear dielectrics, such as SrTiO3 (STO), present unique opportunity not only to develop practical electrically tunable devices, but also to explore novel scientific and technological concepts that exploit strong nonlinearities in these materials. Using prototype device structures, we are currently investigating two interesting phenomena in the realm of nonlinearity: microwave solitons and stochastic resonance. Microwave solitons are similar to optical solitons and are formed when a specific dispersion is introduced into the medium to counteract and balance the effect of nonlinearity for certain waveforms. Stochastic resonance is a phenomenon in which random noise plays a constructive role and enhances a nonlinear system's response to a deterministic signal.
Original language | English (US) |
---|---|
Pages (from-to) | 259-268 |
Number of pages | 10 |
Journal | Integrated Ferroelectrics |
Volume | 22 |
Issue number | 1-4 |
DOIs | |
State | Published - 1998 |
Keywords
- High-temperature superconductors
- Microwave solitons
- Nonlinear dielectrics
- Stochastic resonance
- Strontium titanate
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Control and Systems Engineering
- Ceramics and Composites
- Condensed Matter Physics
- Electrical and Electronic Engineering
- Materials Chemistry