Abstract
The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. Subband decompositions of natural images have significantly non-Gaussian higher-order point statistics; these statistics capture image properties that elude Fourier-based techniques. We develop a Bayesian estimator that is a natural extension of the Wiener solution, and that exploits these higher-order statistics. The resulting nonlinear estimator performs a `coring' operation. We provide a simple model for the subband statistics, and use it to develop a semi-blind noise-removal algorithm based on a steerable wavelet pyramid.
Original language | English (US) |
---|---|
Pages | 379-382 |
Number of pages | 4 |
State | Published - 1996 |
Event | Proceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) - Lausanne, Switz Duration: Sep 16 1996 → Sep 19 1996 |
Other
Other | Proceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) |
---|---|
City | Lausanne, Switz |
Period | 9/16/96 → 9/19/96 |
ASJC Scopus subject areas
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering