TY - JOUR
T1 - Non-abelian dark sectors and their collider signatures
AU - Baumgart, Matthew
AU - Cheung, Clifford
AU - Ruderman, Joshua T.
AU - Wang, Lian Tao
AU - Yavin, Itay
PY - 2009
Y1 - 2009
N2 - Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian ''dark'' gauge symmetry that is broken at ∼1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via ''lepton jets'' which typically contain 2$">2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present several non-SUSY and SUSY decay channels that have displaced vertices and lead to multiple leptons with partially correlated impact parameters.
AB - Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian ''dark'' gauge symmetry that is broken at ∼1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via ''lepton jets'' which typically contain 2$">2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present several non-SUSY and SUSY decay channels that have displaced vertices and lead to multiple leptons with partially correlated impact parameters.
KW - Supersymmetry phenomenology
UR - http://www.scopus.com/inward/record.url?scp=67649522467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649522467&partnerID=8YFLogxK
U2 - 10.1088/1126-6708/2009/04/014
DO - 10.1088/1126-6708/2009/04/014
M3 - Article
AN - SCOPUS:67649522467
SN - 1126-6708
VL - 2009
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 4
M1 - 014
ER -