Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons

Melissa G. McKenzie, Lucy V. Cobbs, Patrick D. Dummer, Timothy J. Petros, Michael M. Halford, Steven A. Stacker, Yimin Zou, Gord J. Fishell, Edmund Au

Research output: Contribution to journalArticlepeer-review

Abstract

GABAergic interneurons have many important functions in cortical circuitry, a reflection of their cell diversity. The developmental origins of this diversity are poorly understood. Here, we identify rostral-caudal regionality in Wnt exposure within the interneuron progenitor zone delineating the specification of the two main interneuron subclasses. Caudally situated medial ganglionic eminence (MGE) progenitors receive high levels of Wnt signaling and give rise to somatostatin (SST)-expressing cortical interneurons. By contrast, parvalbumin (PV)-expressing basket cells originate mostly from the rostral MGE, where Wnt signaling is attenuated. Interestingly, rather than canonical signaling through β-catenin, signaling via the non-canonical Wnt receptor Ryk regulates interneuron cell-fate specification in vivo and in vitro. Indeed, gain of function of Ryk intracellular domain signaling regulates SST and PV fate in a dose-dependent manner, suggesting that Ryk signaling acts in a graded fashion. These data reveal an important role for non-canonical Wnt-Ryk signaling in establishing the correct ratios of cortical interneuron subtypes. Non-canonical Wnt signaling through the Ryk receptor establishes regional subdomains within the MGE along the rostral-caudal axis. These subdomains are defined by graded Ryk signaling, which regulates the proportions of parvalbumin and somatostatin cortical interneurons produced during development.

Original languageEnglish (US)
Pages (from-to)853-864.e4
JournalNeuron
Volume103
Issue number5
DOIs
StatePublished - Sep 4 2019

Keywords

  • Animals
  • Cerebral Cortex/cytology
  • GABAergic Neurons/cytology
  • Interneurons/cytology
  • Mice
  • Mouse Embryonic Stem Cells
  • Neural Stem Cells/cytology
  • Neurogenesis/genetics
  • Parvalbumins/metabolism
  • Receptor Protein-Tyrosine Kinases/genetics
  • Somatostatin/metabolism
  • Wnt Proteins/metabolism
  • Wnt Signaling Pathway

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons'. Together they form a unique fingerprint.

Cite this