TY - JOUR
T1 - Nonfocusing instabilities in coupled, integrable nonlinear Schrödinger pdes
AU - Forest, M. G.
AU - McLaughlin, D. W.
AU - Muraki, D. J.
AU - Wright, O. C.
N1 - Funding Information:
⁄ Funded in part by NSF DMS 97-04549. † Funded by AFOSR F49620-98-1-0256 and NSF DMS 9600128. ‡ Supported by NSF DMR-9704724, DOE DE-FG02-88ER25053, and the Alfred P. Sloan Foundation. § Corresponding author, fax number 919-962-9345; e-mail: [email protected].
PY - 2000
Y1 - 2000
N2 - The nonlinear coupling of two scalar nonlinear Schrödinger (NLS) fields results in nonfocusing instabilities that exist independently of the well-known modulational instability of the focusing using NLS equation. The focusing versus defocusing behavior of scalar NLS fields is a well-known model for the corresponding behavior of pulse transmission in optical fibers in the anomalous (focusing) versus normal (defocusing) dispersion regime [19], [20]. For fibers with birefringence (induced by an asymmetry in the cross section), the scalar NLS fields for two orthogonal polarization modes couple nonlinearly [26]. Experiments by Rothenberg [32], [33] have demonstrated a new type of modulational instability in a birefringent normal dispersion fiber, and he proposes this cross-phase coupling instability as a mechanism for the generation of ultrafast, terahertz optical oscillations. In this paper the nonfocusing plane wave instability in an integrable coupled nonlinear Schrödinger (CNLS) partial differential equation system is contrasted with the focusing instability from two perspectives: traditional linearized stability analysis and integrable methods based on periodic inverse spectral theory. The latter approach is a crucial first step toward a nonlinear, nonlocal understanding of this new optical instability analogous to that developed for the focusing modulational instability of the sine-Gordon equations by Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and the scalar NLS equation by Tracy, Chen, and Lee [36], [37], Forest and Lee [18], and McLaughlin, Li, and Overman [23], [24].
AB - The nonlinear coupling of two scalar nonlinear Schrödinger (NLS) fields results in nonfocusing instabilities that exist independently of the well-known modulational instability of the focusing using NLS equation. The focusing versus defocusing behavior of scalar NLS fields is a well-known model for the corresponding behavior of pulse transmission in optical fibers in the anomalous (focusing) versus normal (defocusing) dispersion regime [19], [20]. For fibers with birefringence (induced by an asymmetry in the cross section), the scalar NLS fields for two orthogonal polarization modes couple nonlinearly [26]. Experiments by Rothenberg [32], [33] have demonstrated a new type of modulational instability in a birefringent normal dispersion fiber, and he proposes this cross-phase coupling instability as a mechanism for the generation of ultrafast, terahertz optical oscillations. In this paper the nonfocusing plane wave instability in an integrable coupled nonlinear Schrödinger (CNLS) partial differential equation system is contrasted with the focusing instability from two perspectives: traditional linearized stability analysis and integrable methods based on periodic inverse spectral theory. The latter approach is a crucial first step toward a nonlinear, nonlocal understanding of this new optical instability analogous to that developed for the focusing modulational instability of the sine-Gordon equations by Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and the scalar NLS equation by Tracy, Chen, and Lee [36], [37], Forest and Lee [18], and McLaughlin, Li, and Overman [23], [24].
UR - http://www.scopus.com/inward/record.url?scp=0000822584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000822584&partnerID=8YFLogxK
U2 - 10.1007/s003329910012
DO - 10.1007/s003329910012
M3 - Article
AN - SCOPUS:0000822584
SN - 0938-8974
VL - 10
SP - 291
EP - 331
JO - Journal of Nonlinear Science
JF - Journal of Nonlinear Science
IS - 3
ER -