Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography

Vivek J. Srinivasan, Tony H. Ko, Maciej Wojtkowski, Mariana Carvalho, Allen Clermont, Sven Erik Bursell, Hui Song Qin, Janis Lem, Jay S. Duker, Joel S. Schuman, James G. Fujimoto

Research output: Contribution to journalArticlepeer-review


PURPOSE. To demonstrate high-speed, ultrahigh-resolution optical coherence tomography (OCT) for noninvasive, in vivo, three-dimensional imaging of the retina in rat and mouse models. METHODS. A high-speed, ultrahigh-resolution OCT system using spectral, or Fourier domain, detection has been developed for small animal retinal imaging. Imaging is performed with a contact lens and postobjective scanning. An axial image resolution of 2.8 μm is achieved with a spectrally broadband superluminescent diode light source with a bandwidth of ~150 nm at ~900-nm center wavelength. Imaging can be performed at 24,000 axial scans per second, which is ~100 times faster than previous ultrahigh-resolution OCT systems. High-definition and three-dimensional retinal imaging is performed in vivo in mouse and rat models. RESULTS. High-speed, ultrahigh-resolution OCT enabled high-definition, high transverse pixel density imaging of the murine retina and visualization of all major intraretinal layers. Raster scan protocols enabled three-dimensional volumetric imagingand comprehensive retinal segmentation algorithms allowed measurement of retinal layers. An OCT fundus image, akin to a fundus photograph was generated by axial summation of three-dimensional OCT data, thus enabling precise registration of OCT measurements to retinal fundus features. CONCLUSIONS. High-speed, ultrahigh-resolution OCT enables imaging of retinal architectural morphology in small animal models. OCT fundus images allow precise registration of OCT images and repeated measurements with respect to retinal fundus features. Three-dimensional OCT imaging enables visualization and quantification of retinal structure, which promises to allow repeated, noninvasive measurements to track disease progression, thereby reducing the need for killing the animal for histology. This capability can accelerate basic research studies in rats and mice and their translation into clinical patient care.

Original languageEnglish (US)
Pages (from-to)5522-5528
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Issue number12
StatePublished - Dec 2006

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography'. Together they form a unique fingerprint.

Cite this