Abstract
A simplified Keller-Segel model for the chemotactic movements of cellular slime mold is reconsidered. In particular, we ask for the circumstances under which the cell distribution can autonomously develop a δ-function singularity. By the use of suitable differential inequalities, we show that this cannot happen in the case of one-dimensional aggregation. For three or more dimensions, we produce time developments which do become singular, while in the important special case of two-dimensional motion, we advance arguments that the possibility of chemotactic collapse requires a threshold number of cells in the system.
Original language | English (US) |
---|---|
Pages (from-to) | 217-237 |
Number of pages | 21 |
Journal | Mathematical Biosciences |
Volume | 56 |
Issue number | 3-4 |
DOIs | |
State | Published - Oct 1981 |
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics