Abstract
We study the nonlinear coupling mechanism and turbulent transition in magnetically confined plasma flows based on two representative limiting regime dynamics. The two-field flux-balanced Hasegawa–Wakatani (BHW) model is taken as a simplified approximation to the key physical processes in the energy-conserving nonlinear plasma flows. The limiting regimes separate the effects of finite non-adiabatic resistivity and extreme non-normal dynamics to enable a more detailed investigation on each individual aspect with the help of various mathematical tools. We adopt the strategy from the selective decay theory used for the simpler one-field system to develop new crucial a priori estimations in the two-field model framework. The competing effects from model dissipation, finite particle resistivity, as well as the nonlinear interaction with a zonal mean state to induce dual direction energy transports are characterized from the systematic analysis. Non-normal dynamics with aligned eigendirections is also shown to go through a sharp transition from turbulence to regularized zonal flows. The diverse phenomena implied from the limiting regime analysis are further confirmed from direct numerical simulations of the BHW model.
Original language | English (US) |
---|---|
Article number | 22 |
Journal | Research in Mathematical Sciences |
Volume | 7 |
Issue number | 3 |
DOIs | |
State | Published - Sep 1 2020 |
ASJC Scopus subject areas
- Theoretical Computer Science
- Mathematics (miscellaneous)
- Computational Mathematics
- Applied Mathematics