Abstract
We shall study L2 energy conserved solutions to the heat equation. We shall first establish the global existence, uniqueness and regularity of solutions to such nonlocal heat flows. We then extend the method to a family of singularly perturbed systems of nonlocal parabolic equations. The main goal is to show that solutions to these perturbed systems converges strongly to some suitable weak-solutions of the limiting constrained nonlocal heat flows of maps into a singular space. It is then possible to study further properties of such suitable weak solutions and the corresponding free boundary problem, which will be discussed in a forthcoming article.
Original language | English (US) |
---|---|
Pages (from-to) | 49-64 |
Number of pages | 16 |
Journal | Discrete and Continuous Dynamical Systems |
Volume | 23 |
Issue number | 1-2 |
DOIs | |
State | Published - Jan 2009 |
Keywords
- Global existence
- Nonlocal heat equation
- Singularly perturbed parabolic equations
- Suitable weak solutions
ASJC Scopus subject areas
- Analysis
- Discrete Mathematics and Combinatorics
- Applied Mathematics