Not All Fabrics Are Created Equal: Exploring eFPGA Parameters for IP Redaction

Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre Emmanuel Gaillardon, Ramesh Karri

Research output: Contribution to journalArticlepeer-review

Abstract

Semiconductor design houses rely on third-party foundries to manufacture their integrated circuits (ICs). While this trend allows them to tackle fabrication costs, it introduces security concerns as external (and potentially malicious) parties can access critical parts of the designs and steal or modify the intellectual property (IP). Embedded field-programmable gate array (eFPGA) redaction is a promising technique to protect critical IPs of an ASIC by redacting (i.e., removing) critical parts and mapping them onto a custom reconfigurable fabric. Only trusted parties will receive the correct bitstream to restore the redacted functionality. While previous studies imply that using an eFPGA is a sufficient condition to provide security against IP threats like reverse-engineering, whether this truly holds for all eFPGA architectures is unclear, thus motivating the study in this article. We examine the security of eFPGA fabrics generated by varying different FPGA design parameters. We characterize the power, performance, and area (PPA) characteristics and evaluate each fabric's resistance to Boolean satisfiability (SAT)-based bitstream recovery. Our results encourage designers to work with custom eFPGA fabrics rather than off-The-shelf commercial FPGAs and reveals that only considering a redaction fabric's bitstream size is inadequate for gauging security.

Original languageEnglish (US)
Pages (from-to)1459-1471
Number of pages13
JournalIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Volume31
Issue number10
DOIs
StatePublished - Oct 1 2023

Keywords

  • Embedded field programmable gate array (eFPGA)
  • hardware security
  • intellectual property (IP) redaction

ASJC Scopus subject areas

  • Software
  • Electrical and Electronic Engineering
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Not All Fabrics Are Created Equal: Exploring eFPGA Parameters for IP Redaction'. Together they form a unique fingerprint.

Cite this