TY - GEN
T1 - Novel double-parallelogram motion constraining mechanisms for vibration isolation systems
AU - Rastegar, Jahangir
AU - Khorrami, Farshad
PY - 2008
Y1 - 2008
N2 - Vibration isolation devices are used to attach various systems to their base structure to reduce the transmission of vibration from and/or to the base structure. Vibration isolation devices allow relative motion between the isolated system and the base platform. This relative motion is critical to the effective operation of vibration isolation devices and is used to absorb or divert vibration energy using spring and viscous damping or dry friction elements. In general, larger the allowed relative motion, more effective will be the performance of the isolation system. In certain applications, the introduced relative motion by the vibration isolation device introduces unavoidable and unwanted motion of the isolated system and can significantly degrade its performance, particularly in terms of positioning precision, or limit the range of allowable relative motion, thereby reducing the effectiveness of the isolation system. In this paper, a novel method is presented that uses appropriate linkage mechanisms to constrain relative motions that are introduced by the vibration isolation system that are not necessary for the proper operation of the vibration isolation system but their presence would degrade the performance of the entire system. As an example, a novel double-parallelogram based motion constraining mechanism is presented, which is used to constrain rotational (rocking) motion of an isolation system without hindering its relative translational motion used for vibration isolation. The design of a prototype of such a linkage mechanism used to isolate payloads from launch vehicles during the launch and the results of its successful testing are presented. Other applications of the present method are discussed.
AB - Vibration isolation devices are used to attach various systems to their base structure to reduce the transmission of vibration from and/or to the base structure. Vibration isolation devices allow relative motion between the isolated system and the base platform. This relative motion is critical to the effective operation of vibration isolation devices and is used to absorb or divert vibration energy using spring and viscous damping or dry friction elements. In general, larger the allowed relative motion, more effective will be the performance of the isolation system. In certain applications, the introduced relative motion by the vibration isolation device introduces unavoidable and unwanted motion of the isolated system and can significantly degrade its performance, particularly in terms of positioning precision, or limit the range of allowable relative motion, thereby reducing the effectiveness of the isolation system. In this paper, a novel method is presented that uses appropriate linkage mechanisms to constrain relative motions that are introduced by the vibration isolation system that are not necessary for the proper operation of the vibration isolation system but their presence would degrade the performance of the entire system. As an example, a novel double-parallelogram based motion constraining mechanism is presented, which is used to constrain rotational (rocking) motion of an isolation system without hindering its relative translational motion used for vibration isolation. The design of a prototype of such a linkage mechanism used to isolate payloads from launch vehicles during the launch and the results of its successful testing are presented. Other applications of the present method are discussed.
UR - http://www.scopus.com/inward/record.url?scp=44949176077&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949176077&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-34880
DO - 10.1115/DETC2007-34880
M3 - Conference contribution
AN - SCOPUS:44949176077
SN - 0791848027
SN - 9780791848029
SN - 0791848094
SN - 9780791848098
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 209
EP - 215
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 31st Mechanisms and Robotics Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -