TY - JOUR
T1 - Nuclear magnetic resonance solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a, l]pyrene
T2 - Intercalation from the minor groove with ruptured Watson-Crick base pairing
AU - Tang, Yijin
AU - Liu, Zhi
AU - Ding, Shuang
AU - Lin, Chin H.
AU - Cai, Yuqin
AU - Rodriguez, Fabian A.
AU - Sayer, Jane M.
AU - Jerina, Donald M.
AU - Amin, Shantu
AU - Broyde, Suse
AU - Geacintov, Nicholas E.
PY - 2012/12/4
Y1 - 2012/12/4
N2 - The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3′-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3′-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
AB - The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3′-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3′-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
UR - http://www.scopus.com/inward/record.url?scp=84870522870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870522870&partnerID=8YFLogxK
U2 - 10.1021/bi3013577
DO - 10.1021/bi3013577
M3 - Article
C2 - 23121427
AN - SCOPUS:84870522870
SN - 0006-2960
VL - 51
SP - 9751
EP - 9762
JO - Biochemistry
JF - Biochemistry
IS - 48
ER -