Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale

Nadrian C. Seeman, Philip S. Lukeman

Research output: Contribution to journalArticlepeer-review

Abstract

DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and they can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nanoconstructs, and in the scaffolding of other species into DNA arrangements.

Original languageEnglish (US)
Pages (from-to)237-270
Number of pages34
JournalReports on Progress in Physics
Volume68
Issue number1
DOIs
StatePublished - Jan 2005

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale'. Together they form a unique fingerprint.

Cite this