TY - JOUR
T1 - Nucleic acid nanostructures
T2 - Bottom-up control of geometry on the nanoscale
AU - Seeman, Nadrian C.
AU - Lukeman, Philip S.
PY - 2005/1
Y1 - 2005/1
N2 - DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and they can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nanoconstructs, and in the scaffolding of other species into DNA arrangements.
AB - DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and they can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nanoconstructs, and in the scaffolding of other species into DNA arrangements.
UR - http://www.scopus.com/inward/record.url?scp=12544252352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12544252352&partnerID=8YFLogxK
U2 - 10.1088/0034-4885/68/1/R05
DO - 10.1088/0034-4885/68/1/R05
M3 - Article
AN - SCOPUS:12544252352
SN - 0034-4885
VL - 68
SP - 237
EP - 270
JO - Reports on Progress in Physics
JF - Reports on Progress in Physics
IS - 1
ER -