Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

Aaditya V. Rangan, David Cai, Louis Tao

Research output: Contribution to journalArticlepeer-review


Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

Original languageEnglish (US)
Pages (from-to)781-798
Number of pages18
JournalJournal of Computational Physics
Issue number2
StatePublished - Feb 10 2007


  • Divide and conquer
  • Newton's method

ASJC Scopus subject areas

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics


Dive into the research topics of 'Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics'. Together they form a unique fingerprint.

Cite this