Abstract
The search for new superconductors capable of carrying loss-free current has been a research theme in condensed matter physics for the past decade. Among superconducting compounds, titanates have not been pursued as much as Cu2+ (3d9) (cuprate) and Fe2+ (3d6) (pnictide) compounds. Particularly, Ti3+-based compounds or electron systems with a special 3d1 filling are thought to be promising candidates as high-TC superconductors, but there has been no report on such pure Ti3+-based superconducting titanates. With the advent of thin-film growth technology, stabilizing new structural phases in single-crystalline thin films is a promising strategy to realize physical properties that are absent in the bulk counterparts. Herein, we report the discovery of unexpected superconductivity in orthorhombic-structured thin films of Ti2O3, a 3d1 electron system, which is in strong contrast to the conventional semiconducting corundum-structured Ti2O3. This is the first report of superconductivity in a titanate with a pure 3d1 electron configuration. Superconductivity at 8 K was observed in the orthorhombic Ti2O3 films. Leveraging the strong structure-property correlation in transition-metal oxides, our discovery introduces a previously unrecognized route for inducing emergent superconductivity in a newly stabilized polymorph phase in epitaxial thin films.
Original language | English (US) |
---|---|
Pages (from-to) | 522-532 |
Number of pages | 11 |
Journal | NPG Asia Materials |
Volume | 10 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1 2018 |
ASJC Scopus subject areas
- Modeling and Simulation
- General Materials Science
- Condensed Matter Physics