Obstacle avoidance for unmanned sea surface vehicles: A hierarchical approach

Prashanth Krishnamurthy, Farshad Khorrami, Tzer Leei Ng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we describe a hierarchical system for path planning and obstacle avoidance for totally autonomous Unmanned Sea Surface Vehicles (USSVs). The proposed system is comprised of three major components: a wide-area planner based on the A* graph-search algorithm, a local-area planner based on our low-resource path-planning and obstacle avoidance algorithm GODZILA, and an inner-loop nonlinear tracking control law. The performance of the proposed system is demonstrated through simulations using our high-accuracy real-time Six Degree-of-Freedom (DOF) Hardware-In-The-Loop (HITL) simulation platform whose design and implementation have been documented in our recent papers. The HITL platform is capable of simultaneously simulating multiple USSVs and passive obstacles and incorporates a nonlinear dynamic model of the USSV including detailed characterizations of hydrodynamic effects, emulation of sensors and instrumentation onboard the USSV, and the actual hardware and software components used for USSV control in the experimental testbed. The performance of the inner-loop controller has been validated through experimental tests which are described briefly in this paper and the experimental validation of the complete obstacle avoidance system is currently underway.

Original languageEnglish (US)
Title of host publicationProceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
Edition1 PART 1
DOIs
StatePublished - 2008
Event17th World Congress, International Federation of Automatic Control, IFAC - Seoul, Korea, Republic of
Duration: Jul 6 2008Jul 11 2008

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Number1 PART 1
Volume17
ISSN (Print)1474-6670

Other

Other17th World Congress, International Federation of Automatic Control, IFAC
Country/TerritoryKorea, Republic of
CitySeoul
Period7/6/087/11/08

Keywords

  • Autonomous robotic systems
  • Hardware-in-the-loop simulation
  • Rule-based approaches

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Obstacle avoidance for unmanned sea surface vehicles: A hierarchical approach'. Together they form a unique fingerprint.

Cite this