Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions

Gregory Kaler, David M. Truong, Derina E. Sweeney, Darren W. Logan, Megha Nagle, Wei Wu, Satish A. Eraly, Sanjay K. Nigam

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We have characterized the expression of organic anion transporter 6, Oat6 (slc22a20), in olfactory mucosa, as well as its interaction with several odorant organic anions. In situ hybridization reveals diffuse Oat6 expression throughout olfactory epithelium, yet olfactory neurons laser-capture microdissected from either the main olfactory epithelium (MOE) or the vomeronasal organ (VNO) did not express Oat6 mRNA. These data suggest that Oat6 is expressed in non-neuronal cells of olfactory tissue, such as epithelial and/or other supporting cells. We next investigated interaction of Oat6 with several small organic anions that have previously been identified as odortype components in mouse urine. We find that each of these compounds, propionate, 2- and 3-methylbutyrate, benzoate, heptanoate, and 2-ethylhexanoate, inhibits Oat6-mediated uptake of a labeled tracer, estrone sulfate, consistent with their being Oat6 substrates. Previously, we noted defects in the renal elimination of odortype and odortype-like molecules in Oat1 knockout mice. The finding that such molecules interact with Oat6 raises the possibility that odorants secreted into the urine through one OAT-mediated mechanism (Eraly et al., JBC 2006) are transported through the olfactory mucosa through another OAT-mediated mechanism. Oat6 might play a direct or indirect role in olfaction, such as modulation of the availability of odorant organic anions at the mucosal surface for presentation to olfactory neurons or facilitation of delivery to a distal site of chemosensation, among other possibilities that we discuss.

    Original languageEnglish (US)
    Pages (from-to)872-876
    Number of pages5
    JournalBiochemical and Biophysical Research Communications
    Volume351
    Issue number4
    DOIs
    StatePublished - Dec 29 2006

    Keywords

    • Oat
    • Odorant
    • Olfactory mucosa
    • Organic anion transporter
    • Slc22a20
    • Volatile organic acid

    ASJC Scopus subject areas

    • Biophysics
    • Biochemistry
    • Molecular Biology
    • Cell Biology

    Fingerprint

    Dive into the research topics of 'Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions'. Together they form a unique fingerprint.

    Cite this