TY - GEN
T1 - On distributing symmetric streaming computations
AU - Feldman, Jon
AU - Muthukrishnan, S.
AU - Sidiropoulos, Anastasios
AU - Stein, Cliff
AU - Svitkina, Zoya
PY - 2008
Y1 - 2008
N2 - A common approach for dealing with large data sets is to stream over the input in one pass, and perform computations using sublinear resources. For truly massive data sets, however, even making a single pass over the data is prohibitive. Therefore, streaming computations must be distributed over many machines. In practice, obtaining significant speedups using distributed computation has numerous challenges including synchronization, load balancing, overcoming processor failures, and data distribution. Successful systems in practice such as Google's MapReduce and Apache's Hadoop address these problems by only allowing a certain class of highly distributable tasks defined by local computations that can be applied in any order to the input. The fundamental question that arises is: How does the class of computational tasks supported by these systems differ from the class for which streaming solutions exist? We introduce a simple algorithmic model for massive, unordered, distributed (mud) computation, as implemented by these systems. We show that in principle, mud algorithms are equivalent in power to symmetric streaming algorithms. More precisely, we show that any symmetric (orderinvariant) function that can be computed by a streaming algorithm can also be computed by a mud algorithm, with comparable space and communication complexity. Our simulation uses Savitch's theorem and therefore has superpolynomial time complexity. We extend our simulation result to some natural classes of approximate and randomized streaming algorithms. We also give negative results, using communication complexity arguments to prove that extensions to private randomness, promise problems and indeterminate functions are impossible. We also introduce an extension of the mud model to multiple keys and multiple rounds.
AB - A common approach for dealing with large data sets is to stream over the input in one pass, and perform computations using sublinear resources. For truly massive data sets, however, even making a single pass over the data is prohibitive. Therefore, streaming computations must be distributed over many machines. In practice, obtaining significant speedups using distributed computation has numerous challenges including synchronization, load balancing, overcoming processor failures, and data distribution. Successful systems in practice such as Google's MapReduce and Apache's Hadoop address these problems by only allowing a certain class of highly distributable tasks defined by local computations that can be applied in any order to the input. The fundamental question that arises is: How does the class of computational tasks supported by these systems differ from the class for which streaming solutions exist? We introduce a simple algorithmic model for massive, unordered, distributed (mud) computation, as implemented by these systems. We show that in principle, mud algorithms are equivalent in power to symmetric streaming algorithms. More precisely, we show that any symmetric (orderinvariant) function that can be computed by a streaming algorithm can also be computed by a mud algorithm, with comparable space and communication complexity. Our simulation uses Savitch's theorem and therefore has superpolynomial time complexity. We extend our simulation result to some natural classes of approximate and randomized streaming algorithms. We also give negative results, using communication complexity arguments to prove that extensions to private randomness, promise problems and indeterminate functions are impossible. We also introduce an extension of the mud model to multiple keys and multiple rounds.
UR - http://www.scopus.com/inward/record.url?scp=58449099693&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58449099693&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:58449099693
SN - 9780898716474
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 710
EP - 719
BT - Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms
T2 - 19th Annual ACM-SIAM Symposium on Discrete Algorithms
Y2 - 20 January 2008 through 22 January 2008
ER -