TY - GEN
T1 - On ideal lattices and learning with errors over rings
AU - Lyubashevsky, Vadim
AU - Peikert, Chris
AU - Regev, Oded
PY - 2010
Y1 - 2010
N2 - The "learning with errors" (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ring-LWE. Finally, the algebraic structure of ring-LWE might lead to new cryptographic applications previously not known to be based on LWE.
AB - The "learning with errors" (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ring-LWE. Finally, the algebraic structure of ring-LWE might lead to new cryptographic applications previously not known to be based on LWE.
UR - http://www.scopus.com/inward/record.url?scp=77954639468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954639468&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-13190-5_1
DO - 10.1007/978-3-642-13190-5_1
M3 - Conference contribution
AN - SCOPUS:77954639468
SN - 3642131891
SN - 9783642131899
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 1
EP - 23
BT - Advances in Cryptology - Eurocrypt 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
T2 - 29th in the Series of EuropeanConferences on the Theory and Application of Cryptographic Techniques, Eurocrypt 2010
Y2 - 30 May 2010 through 3 June 2010
ER -