TY - GEN
T1 - On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
AU - Mintun, Eric
AU - Kirillov, Alexander
AU - Xie, Saining
N1 - Funding Information:
This work completed as part of the Facebook AI residency program.
Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Invariance to a broad array of image corruptions, such as warping, noise, or color shifts, is an important aspect of building robust models in computer vision. Recently, several new data augmentations have been proposed that significantly improve performance on ImageNet-C, a benchmark of such corruptions. However, there is still a lack of basic understanding on the relationship between data augmentations and test-time corruptions. To this end, we develop a feature space for image transforms, and then use a new measure in this space between augmentations and corruptions called the Minimal Sample Distance to demonstrate a strong correlation between similarity and performance. We then investigate recent data augmentations and observe a significant degradation in corruption robustness when the test-time corruptions are sampled to be perceptually dissimilar from ImageNet-C in this feature space. Our results suggest that test error can be improved by training on perceptually similar augmentations, and data augmentations may not generalize well beyond the existing benchmark. We hope our results and tools will allow for more robust progress towards improving robustness to image corruptions. We provide code at https://github.com/facebookresearch/augmentation-corruption.
AB - Invariance to a broad array of image corruptions, such as warping, noise, or color shifts, is an important aspect of building robust models in computer vision. Recently, several new data augmentations have been proposed that significantly improve performance on ImageNet-C, a benchmark of such corruptions. However, there is still a lack of basic understanding on the relationship between data augmentations and test-time corruptions. To this end, we develop a feature space for image transforms, and then use a new measure in this space between augmentations and corruptions called the Minimal Sample Distance to demonstrate a strong correlation between similarity and performance. We then investigate recent data augmentations and observe a significant degradation in corruption robustness when the test-time corruptions are sampled to be perceptually dissimilar from ImageNet-C in this feature space. Our results suggest that test error can be improved by training on perceptually similar augmentations, and data augmentations may not generalize well beyond the existing benchmark. We hope our results and tools will allow for more robust progress towards improving robustness to image corruptions. We provide code at https://github.com/facebookresearch/augmentation-corruption.
UR - http://www.scopus.com/inward/record.url?scp=85128328679&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128328679&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85128328679
T3 - Advances in Neural Information Processing Systems
SP - 3571
EP - 3583
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -