TY - GEN

T1 - On MIMO Channel Capacity with Output Quantization Constraints

AU - Khalili, Abbas

AU - Rini, Stefano

AU - Barletta, Luca

AU - Erkip, Elza

AU - Eldar, Yonina C.

N1 - Funding Information:
This work has been supported in part by NSF Grant #1527750
Funding Information:
1This work has been supported in part by NSF Grant #1527750.

PY - 2018/8/15

Y1 - 2018/8/15

N2 - The capacity of a Multiple-Input Multiple-Output (MIMO) channel in which the antenna outputs are processed by an analog linear combining network and quantized by a set of threshold quantizers is studied. The linear combining weights and quantization thresholds are selected from a set of possible configurations as a function of the channel matrix. The possible configurations of the combining network model specific analog receiver architectures, such as single antenna selection, sign quantization of the antenna outputs or linear processing of the outputs. An interesting connection between the capacity of this channel and a constrained sphere packing problem in which unit spheres are packed in a hyperplane arrangement is shown. From a high-level perspective, this follows from the fact that each threshold quantizer can be viewed as a hyperplane partitioning the transmitter signal space. Accordingly, the output of the set of quantizers corresponds to the possible regions induced by the hyperplane arrangement corresponding to the channel realization and receiver configuration. This connection provides a number of important insights into the design of quantization architectures for MIMO receivers; for instance, it shows that for a given number of quantizers, choosing configurations which induce a larger number of partitions can lead to higher rates.1

AB - The capacity of a Multiple-Input Multiple-Output (MIMO) channel in which the antenna outputs are processed by an analog linear combining network and quantized by a set of threshold quantizers is studied. The linear combining weights and quantization thresholds are selected from a set of possible configurations as a function of the channel matrix. The possible configurations of the combining network model specific analog receiver architectures, such as single antenna selection, sign quantization of the antenna outputs or linear processing of the outputs. An interesting connection between the capacity of this channel and a constrained sphere packing problem in which unit spheres are packed in a hyperplane arrangement is shown. From a high-level perspective, this follows from the fact that each threshold quantizer can be viewed as a hyperplane partitioning the transmitter signal space. Accordingly, the output of the set of quantizers corresponds to the possible regions induced by the hyperplane arrangement corresponding to the channel realization and receiver configuration. This connection provides a number of important insights into the design of quantization architectures for MIMO receivers; for instance, it shows that for a given number of quantizers, choosing configurations which induce a larger number of partitions can lead to higher rates.1

KW - Capacity

KW - Hybrid analog-digital receiver

KW - MIMO

KW - One-bit quantization

KW - Sphere packing

UR - http://www.scopus.com/inward/record.url?scp=85052436299&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052436299&partnerID=8YFLogxK

U2 - 10.1109/ISIT.2018.8437510

DO - 10.1109/ISIT.2018.8437510

M3 - Conference contribution

AN - SCOPUS:85052436299

SN - 9781538647806

T3 - IEEE International Symposium on Information Theory - Proceedings

SP - 1355

EP - 1359

BT - 2018 IEEE International Symposium on Information Theory, ISIT 2018

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 2018 IEEE International Symposium on Information Theory, ISIT 2018

Y2 - 17 June 2018 through 22 June 2018

ER -