On network design spaces for visual recognition

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan Yen Lo, Piotr Dollar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Over the past several years progress in designing better neural network architectures for visual recognition has been substantial. To help sustain this rate of progress, in this work we propose to reexamine the methodology for comparing network architectures. In particular, we introduce a new comparison paradigm of distribution estimates, in which network design spaces are compared by applying statistical techniques to populations of sampled models, while controlling for confounding factors like network complexity. Compared to current methodologies of comparing point and curve estimates of model families, distribution estimates paint a more complete picture of the entire design landscape. As a case study, we examine design spaces used in neural architecture search (NAS). We find significant statistical differences between recent NAS design space variants that have been largely overlooked. Furthermore, our analysis reveals that the design spaces for standard model families like ResNeXt can be comparable to the more complex ones used in recent NAS work. We hope these insights into distribution analysis will enable more robust progress toward discovering better networks for visual recognition.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1882-1890
Number of pages9
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'On network design spaces for visual recognition'. Together they form a unique fingerprint.

Cite this