TY - JOUR
T1 - On Singularity Formation in a Hele-Shaw Model
AU - Constantin, Peter
AU - Elgindi, Tarek
AU - Nguyen, Huy
AU - Vicol, Vlad
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - We discuss a lubrication approximation model of the interface between two immiscible fluids in a Hele-Shaw cell, derived in Constantin et al. (Phys Rev E 47(6):4169–4181, 1993) and widely studied since. The model consists of a single one dimensional evolution equation for the thickness 2h = 2h(x, t) of a thin neck of fluid,∂th+∂x(h∂x3h)=0, for x∈(-1,1)andt≥0. The boundary conditions fix the neck height and the pressure jump: h(±1,t)=1,∂x2h(±1,t)=P>0. We prove that starting from smooth and positive h, as long as h(x, t) > 0, for x ∈ [−1, 1], t ∈ [0, T ], no singularity can arise in the solution up to time T. As a consequence, we prove for any P > 2 and any smooth and positive initial datum that the solution pinches off in either finite or infinite time, i.e., inf [ - 1 , 1 ] × [ 0 , T ∗ )h= 0 , for some T∗∈ (0 , ∞]. These facts have been long anticipated on the basis of numerical and theoretical studies.
AB - We discuss a lubrication approximation model of the interface between two immiscible fluids in a Hele-Shaw cell, derived in Constantin et al. (Phys Rev E 47(6):4169–4181, 1993) and widely studied since. The model consists of a single one dimensional evolution equation for the thickness 2h = 2h(x, t) of a thin neck of fluid,∂th+∂x(h∂x3h)=0, for x∈(-1,1)andt≥0. The boundary conditions fix the neck height and the pressure jump: h(±1,t)=1,∂x2h(±1,t)=P>0. We prove that starting from smooth and positive h, as long as h(x, t) > 0, for x ∈ [−1, 1], t ∈ [0, T ], no singularity can arise in the solution up to time T. As a consequence, we prove for any P > 2 and any smooth and positive initial datum that the solution pinches off in either finite or infinite time, i.e., inf [ - 1 , 1 ] × [ 0 , T ∗ )h= 0 , for some T∗∈ (0 , ∞]. These facts have been long anticipated on the basis of numerical and theoretical studies.
UR - http://www.scopus.com/inward/record.url?scp=85052597330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052597330&partnerID=8YFLogxK
U2 - 10.1007/s00220-018-3241-6
DO - 10.1007/s00220-018-3241-6
M3 - Article
AN - SCOPUS:85052597330
SN - 0010-3616
VL - 363
SP - 139
EP - 171
JO - Communications In Mathematical Physics
JF - Communications In Mathematical Physics
IS - 1
ER -