On the competitiveness of on-line real-time task scheduling

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, F. Wang

Research output: Contribution to journalArticlepeer-review


With respect to on-line scheduling algorithms that must direct the service of sporadic task requests we quantify the benefit of clairvoyancy, i.e., the power of possessing knowledge of various task parameters of future events. Specifically, we consider the problem of preemptively sheduling sporadic task requests in both uni- and multi-processor environments. If a task request is successfuly scheduled to completion, a value equal to the task's execution time is obtained; otherwise no value is obtained. We prove that no on-line scheduling algorithm can guarantee a cumulative value greater than 1/4th the value obtainable by a clairvoyant scheduler; i.e., we prove a 1/4th upper bound on the competitive factor of on-line real-time schedulers. We present an online uniprocessor scheduling algorithm TD1 that actually has a competitive factor of 1/4; this bound is thus shown to be tight. We further consider the effect of restricting the amount of overloading permitted (the loading factor), and quantify the relationship between the loading factor and the upper bound on the competitive factor. Other results of a similar nature deal with the effect of value densities (measuring the importance of type of a task). Generalizations to dual-processor on-line scheduling are also considered. For the dual-processor case, we prove an upper bound of 1/2 on the competitive factor. This bound is shown to be tight in the special case when all the tasks have the same density and zero laxity.

Original languageEnglish (US)
Pages (from-to)125-144
Number of pages20
JournalReal-Time Systems
Issue number2
StatePublished - Jun 1992

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Computer Science Applications
  • Computer Networks and Communications
  • Control and Optimization
  • Electrical and Electronic Engineering


Dive into the research topics of 'On the competitiveness of on-line real-time task scheduling'. Together they form a unique fingerprint.

Cite this