TY - GEN
T1 - On the Cryptographic Hardness of Learning Single Periodic Neurons
AU - Song, Min Jae
AU - Zadik, Ilias
AU - Bruna, Joan
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-based) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems, whose hardness form the foundation of lattice-based cryptography. Our core hard family of functions, which are well-approximated by one-layer neural networks, take the general form of a univariate periodic function applied to an affine projection of the data. These functions have appeared in previous seminal works which demonstrate their hardness against gradient-based (Shamir’18), and Statistical Query (SQ) algorithms (Song et al.’17). We show that if (polynomially) small noise is added to the labels, the intractability of learning these functions applies to all polynomial-time algorithms, beyond gradient-based and SQ algorithms, under the aforementioned cryptographic assumptions. Moreover, we demonstrate the necessity of noise in the hardness result by designing a polynomial-time algorithm for learning certain families of such functions under exponentially small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm. Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE detection (Bruna et al.’21) and phase retrieval with an optimal sample complexity of d + 1 samples. In the former case, this improves upon the quadratic-in-d sample complexity required in (Bruna et al.’21).
AB - We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-based) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems, whose hardness form the foundation of lattice-based cryptography. Our core hard family of functions, which are well-approximated by one-layer neural networks, take the general form of a univariate periodic function applied to an affine projection of the data. These functions have appeared in previous seminal works which demonstrate their hardness against gradient-based (Shamir’18), and Statistical Query (SQ) algorithms (Song et al.’17). We show that if (polynomially) small noise is added to the labels, the intractability of learning these functions applies to all polynomial-time algorithms, beyond gradient-based and SQ algorithms, under the aforementioned cryptographic assumptions. Moreover, we demonstrate the necessity of noise in the hardness result by designing a polynomial-time algorithm for learning certain families of such functions under exponentially small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm. Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE detection (Bruna et al.’21) and phase retrieval with an optimal sample complexity of d + 1 samples. In the former case, this improves upon the quadratic-in-d sample complexity required in (Bruna et al.’21).
UR - http://www.scopus.com/inward/record.url?scp=85131941179&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131941179&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131941179
T3 - Advances in Neural Information Processing Systems
SP - 29602
EP - 29615
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -