On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model

Seongjin Shin, Sang Woo Lee, Hwijeen Ahn, Sungdong Kim, Hyoung Seok Kim, Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung Woo Ha, Nako Sung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Many recent studies on large-scale language models have reported successful in-context zero- and few-shot learning ability. However, the in-depth analysis of when in-context learning occurs is still lacking. For example, it is unknown how in-context learning performance changes as the training corpus varies. Here, we investigate the effects of the source and size of the pretraining corpus on in-context learning in HyperCLOVA, a Korean-centric GPT-3 model. From our in-depth investigation, we introduce the following observations: (1) in-context learning performance heavily depends on the corpus domain source, and the size of the pretraining corpus does not necessarily determine the emergence of in-context learning, (2) in-context learning ability can emerge when a language model is trained on a combination of multiple corpora, even when each corpus does not result in in-context learning on its own, (3) pretraining with a corpus related to a downstream task does not always guarantee the competitive in-context learning performance of the downstream task, especially in the few-shot setting, and (4) the relationship between language modeling (measured in perplexity) and in-context learning does not always correlate: e.g., low perplexity does not always imply high in-context few-shot learning performance.

Original languageEnglish (US)
Title of host publicationNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages5168-5186
Number of pages19
ISBN (Electronic)9781955917711
StatePublished - 2022
Event2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022 - Seattle, United States
Duration: Jul 10 2022Jul 15 2022

Publication series

NameNAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022
Country/TerritoryUnited States
CitySeattle
Period7/10/227/15/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model'. Together they form a unique fingerprint.

Cite this