TY - JOUR
T1 - On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations
AU - Ghoul, Tej Eddine
AU - Ibrahim, Slim
AU - Lin, Quyuan
AU - Titi, Edriss S.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature.
PY - 2022/2
Y1 - 2022/2
N2 - We study the effect of the rotation on the life-span of solutions to the 3D hydrostatic Euler equations with rotation and the inviscid Primitive equations (PEs) on the torus. The space of analytic functions appears to be the natural space to study the initial value problem for the inviscid PEs with general initial data, as they have been recently shown to exhibit Kelvin–Helmholtz type instability. First, for a short interval of time that is independent of the rate of rotation | Ω | , we establish the local well-posedness of the inviscid PEs in the space of analytic functions. In addition, thanks to a fine analysis of the barotropic and baroclinic modes decomposition, we establish two results about the long time existence of solutions. (i) Independently of | Ω | , we show that the life-span of the solution tends to infinity as the analytic norm of the initial baroclinic mode goes to zero. Moreover, we show in this case that the solution of the 3D inviscid PEs converges to the solution of the limit system, which is governed by the 2D Euler equations. (ii) We show that the life-span of the solution can be prolonged unboundedly with | Ω | → ∞, which is the main result of this paper. This is established for “well-prepared” initial data, namely, when only the Sobolev norm (but not the analytic norm) of the baroclinic mode is small enough, depending on | Ω |. Furthermore, for large | Ω | and “well-prepared” initial data, we show that the solution to the 3D inviscid PEs is approximated by the solution to a simple limit resonant system with the same initial data.
AB - We study the effect of the rotation on the life-span of solutions to the 3D hydrostatic Euler equations with rotation and the inviscid Primitive equations (PEs) on the torus. The space of analytic functions appears to be the natural space to study the initial value problem for the inviscid PEs with general initial data, as they have been recently shown to exhibit Kelvin–Helmholtz type instability. First, for a short interval of time that is independent of the rate of rotation | Ω | , we establish the local well-posedness of the inviscid PEs in the space of analytic functions. In addition, thanks to a fine analysis of the barotropic and baroclinic modes decomposition, we establish two results about the long time existence of solutions. (i) Independently of | Ω | , we show that the life-span of the solution tends to infinity as the analytic norm of the initial baroclinic mode goes to zero. Moreover, we show in this case that the solution of the 3D inviscid PEs converges to the solution of the limit system, which is governed by the 2D Euler equations. (ii) We show that the life-span of the solution can be prolonged unboundedly with | Ω | → ∞, which is the main result of this paper. This is established for “well-prepared” initial data, namely, when only the Sobolev norm (but not the analytic norm) of the baroclinic mode is small enough, depending on | Ω |. Furthermore, for large | Ω | and “well-prepared” initial data, we show that the solution to the 3D inviscid PEs is approximated by the solution to a simple limit resonant system with the same initial data.
UR - http://www.scopus.com/inward/record.url?scp=85122313141&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122313141&partnerID=8YFLogxK
U2 - 10.1007/s00205-021-01748-y
DO - 10.1007/s00205-021-01748-y
M3 - Article
AN - SCOPUS:85122313141
SN - 0003-9527
VL - 243
SP - 747
EP - 806
JO - Archive for Rational Mechanics and Analysis
JF - Archive for Rational Mechanics and Analysis
IS - 2
ER -