On the equivalence between graph isomorphism testing and function approximation with GNNs

Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna

Research output: Contribution to journalConference articlepeer-review

Abstract

Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNN, which succeeds in distinguishing these graphs as well as for tasks on real-world datasets.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'On the equivalence between graph isomorphism testing and function approximation with GNNs'. Together they form a unique fingerprint.

Cite this