On the Parameterized Complexity of Graph Modification to First-Order Logic Properties

Fedor V. Fomin, Petr A. Golovach, Dimitrios M. Thilikos

Research output: Contribution to journalArticlepeer-review

Abstract

We establish connections between parameterized/kernelization complexity of graph modification problems and expressibility in logic. For a first-order logic formula φ, we consider the problem of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the resulting modification has the property expressible by φ. We provide sufficient and necessary conditions on the structure of the prefix of φ specifying when the corresponding graph modification problem is fixed-parameter tractable (parameterized by k) and when it admits a polynomial kernel.

Original languageEnglish (US)
Pages (from-to)251-271
Number of pages21
JournalTheory of Computing Systems
Volume64
Issue number2
DOIs
StatePublished - Feb 1 2020

Keywords

  • Descriptive complexity
  • First-order logic
  • Graph modification
  • Kernelization
  • Parameterized complexity

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'On the Parameterized Complexity of Graph Modification to First-Order Logic Properties'. Together they form a unique fingerprint.

Cite this