TY - GEN
T1 - On the power of finite automata with both nondeterministic and probabilistic states (Preliminary version)
AU - Condon, Anne
AU - Hellerstein, Lisa
AU - Pottle, Samuel
AU - Wigderson, Avi
N1 - Publisher Copyright:
© 1994 ACM.
PY - 1994/5/23
Y1 - 1994/5/23
N2 - We study finite automata with both nondeterministic and random states (npfa's). We restrict our attention to those npfa's that accept their languages with a small probability of error and run in polynomial expected time. Equivalently, we study Arthur-Merlin games where the players are limited to polynomial time and constant space. Dwork and Stockmeyer asked whether the above class of npfa's accept only the regular languages (this was known if the automaton has only randomness or only nondeterminism). We show that the answer is yes in the case of npfa's with a l-way input head. We also show that if L is a nonregular language, then either L or is not accepted by any npfa with a 2-way input head. Toward this end, we define a new measure of the complexity of a language L, called its l-Tiling complexity. For each n, this is the number of tiles needed to cover the 1's in the "characteristic matrix" of L, namely the binary matrix with a row and column for each string of length n, where entry [z, y] = 1 if and only if the string zy ϵ L. We show that a language has constant l-Tiling complexity if and only if it is regular, from which the result on l-way input follows. Our main result regarding the general 2-way input tape follows by contrasting two bounds: An upper bound of polylog(n) on the l-Tiling complexity of every language computed by our model, and a lower bound stating that the l-Tiling complexity of a nonregular language or its complement exceeds a function in 2Ω√(logn) infinitely often. The last lower bound follows by proving that the characteristic matrix of ever-y nonregular language has rank n for infinitely many n. This is our main technical result, and its proof uses techniques of Frobenius and Iohvidov developed for Hankel matrices.
AB - We study finite automata with both nondeterministic and random states (npfa's). We restrict our attention to those npfa's that accept their languages with a small probability of error and run in polynomial expected time. Equivalently, we study Arthur-Merlin games where the players are limited to polynomial time and constant space. Dwork and Stockmeyer asked whether the above class of npfa's accept only the regular languages (this was known if the automaton has only randomness or only nondeterminism). We show that the answer is yes in the case of npfa's with a l-way input head. We also show that if L is a nonregular language, then either L or is not accepted by any npfa with a 2-way input head. Toward this end, we define a new measure of the complexity of a language L, called its l-Tiling complexity. For each n, this is the number of tiles needed to cover the 1's in the "characteristic matrix" of L, namely the binary matrix with a row and column for each string of length n, where entry [z, y] = 1 if and only if the string zy ϵ L. We show that a language has constant l-Tiling complexity if and only if it is regular, from which the result on l-way input follows. Our main result regarding the general 2-way input tape follows by contrasting two bounds: An upper bound of polylog(n) on the l-Tiling complexity of every language computed by our model, and a lower bound stating that the l-Tiling complexity of a nonregular language or its complement exceeds a function in 2Ω√(logn) infinitely often. The last lower bound follows by proving that the characteristic matrix of ever-y nonregular language has rank n for infinitely many n. This is our main technical result, and its proof uses techniques of Frobenius and Iohvidov developed for Hankel matrices.
UR - http://www.scopus.com/inward/record.url?scp=0027929414&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027929414&partnerID=8YFLogxK
U2 - 10.1145/195058.195431
DO - 10.1145/195058.195431
M3 - Conference contribution
AN - SCOPUS:0027929414
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 676
EP - 685
BT - Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994
PB - Association for Computing Machinery
T2 - 26th Annual ACM Symposium on Theory of Computing, STOC 1994
Y2 - 23 May 1994 through 25 May 1994
ER -