On the skewness of the temperature derivative in turbulent flows

K. R. Sreenivasan, S. Tavoularis

Research output: Contribution to journalArticlepeer-review


This note provides some explanation of the fact that, contrary to the requirements of local isotropy, the skewness S of the streamwise temperature derivative ∂θ/∂x1 has been observed to be a non-zero constant of magnitude of about unity in high-Reynolds-number and high-Péclet-number turbulent shear flows. Measurements in slightly heated homogeneous shear flows and in unsheared grid turbulence suggest that S is non-zero only when the mean shear dU1/dx2 and the mean temperature gradient dT/dx2 are both non-zero. The sign of S is given by –sgn (dU1/dx2).sgn (dT/dx2). For fixed dU1/dx2, S is of the form tanh (αdT/dx2), α being a constant, while for fixed dT/dx2, it is of the form S/S* = 1 − β1 exp (− β2τ), where S* is a characteristic value of S, β1 and β2 are positive constants, and τ can be interpreted as a ‘total strain’. The derivative skewness data in other (inhomogeneous) shear flows are also compatible with the latter relation. Predictions from a simplified transport equation for [formula omitted], derived in the light of the present experimental observations, are in reasonable agreement with the measured values of S. A possible physical mechanism maintaining S is discussed.

Original languageEnglish (US)
Pages (from-to)783-795
Number of pages13
JournalJournal of Fluid Mechanics
Issue number4
StatePublished - Dec 1980

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics


Dive into the research topics of 'On the skewness of the temperature derivative in turbulent flows'. Together they form a unique fingerprint.

Cite this