Abstract
A compact body c in ℝd is κ-round if for every point p ∈ ∂c there exists a closed ball that contains p, is contained in c, and has radius κ diam c. We show that, for any fixed κ > 0, the combinatorial complexity of the union of n κ-round, not necessarily convex objects in ℝ3 (resp., in ℝ4) of constant description complexity is O(n2+ε) (resp., O(n 3+ε)) for any ε > 0, where the constant of proportionality depends on ε, κ, and the algebraic complexity of the objects. The bound is almost tight.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG'04) |
Pages | 383-390 |
Number of pages | 8 |
State | Published - 2004 |
Event | Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG'04) - Brooklyn, NY, United States Duration: Jun 9 2004 → Jun 11 2004 |
Other
Other | Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG'04) |
---|---|
Country/Territory | United States |
City | Brooklyn, NY |
Period | 6/9/04 → 6/11/04 |
Keywords
- Combinatorial complexity
- Fat objects
- Union of objects
ASJC Scopus subject areas
- Software
- Geometry and Topology
- Safety, Risk, Reliability and Quality
- Chemical Health and Safety