On the use of genetic algorithms in database client clustering

Je Ho Park, Vinay Kanitkar, Alex Delis, R. N. Uma

Research output: Contribution to journalConference articlepeer-review

Abstract

In conventional two-tier client-server databases, clients access and modify shared data resident in a common server. As the number of clients increases, the centralized database server can become a performance bottleneck. In order to overcome this scalability problem, a three-tier client-server configuration has been proposed that features the partitioning of clients into logical clusters. Here, the objective is to maximize the data sharing among the clients in each cluster. In this paper, we propose a genetic algorithm to create such client clusters and evaluate two different techniques for generating the initial solution populations. We compare the performance of the two-tier and three-tier configurations with respect to the transaction turnaround times and object response times. Our experimental results indicate that the clustered architecture can offer improved performance over its two-tier counterpart.

Original languageEnglish (US)
Pages (from-to)339-342
Number of pages4
JournalProceedings of the International Conference on Tools with Artificial Intelligence
StatePublished - 1999
EventProceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '99) - Chicago, IL, USA
Duration: Nov 9 1999Nov 11 1999

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'On the use of genetic algorithms in database client clustering'. Together they form a unique fingerprint.

Cite this