TY - JOUR

T1 - On the V-states for the Generalized Quasi-Geostrophic Equations

AU - Hassainia, Zineb

AU - Hmidi, Taoufik

N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.

PY - 2015/7/1

Y1 - 2015/7/1

N2 - We prove the existence of the V-states for the generalized inviscid SQG equations with $${\alpha \in ]0, 1[.}$$α∈]0,1[. These structures are special rotating simply connected patches with m-fold symmetry bifurcating from the trivial solution at some explicit values of the angular velocity. This produces, inter alia, an infinite family of non stationary global solutions with uniqueness.

AB - We prove the existence of the V-states for the generalized inviscid SQG equations with $${\alpha \in ]0, 1[.}$$α∈]0,1[. These structures are special rotating simply connected patches with m-fold symmetry bifurcating from the trivial solution at some explicit values of the angular velocity. This produces, inter alia, an infinite family of non stationary global solutions with uniqueness.

UR - http://www.scopus.com/inward/record.url?scp=84939979067&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939979067&partnerID=8YFLogxK

U2 - 10.1007/s00220-015-2300-5

DO - 10.1007/s00220-015-2300-5

M3 - Article

AN - SCOPUS:84939979067

VL - 337

SP - 321

EP - 377

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 1

ER -