On Transductive Regression

Corinna Cortes, Mehryar Mohri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In many modern large-scale learning applications, the amount of unlabeled data far exceeds that of labeled data. A common instance of this problem is the transductive setting where the unlabeled test points are known to the learning algorithm. This paper presents a study of regression problems in that setting. It presents explicit VC-dimension error bounds for transductive regression that hold for all bounded loss functions and coincide with the tight classification bounds of Vapnik when applied to classification. It also presents a new transductive regression algorithm inspired by our bound that admits a primal and kernelized closed-form solution and deals efficiently with large amounts of unlabeled data. The algorithm exploits the position of unlabeled points to locally estimate their labels and then uses a global optimization to ensure robust predictions. Our study also includes the results of experiments with several publicly available regression data sets with up to 20,000 unlabeled examples. The comparison with other transductive regression algorithms shows that it performs well and that it can scale to large data sets.

Original languageEnglish (US)
Title of host publicationNIPS 2006
Subtitle of host publicationProceedings of the 19th International Conference on Neural Information Processing Systems
EditorsBernhard Scholkopf, John C. Platt, Thomas Hofmann
PublisherMIT Press Journals
Pages305-312
Number of pages8
ISBN (Electronic)0262195682, 9780262195683
StatePublished - 2006
Event19th International Conference on Neural Information Processing Systems, NIPS 2006 - Vancouver, Canada
Duration: Dec 4 2006Dec 7 2006

Publication series

NameNIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems

Conference

Conference19th International Conference on Neural Information Processing Systems, NIPS 2006
Country/TerritoryCanada
CityVancouver
Period12/4/0612/7/06

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'On Transductive Regression'. Together they form a unique fingerprint.

Cite this