Online estimation of geometric and inertia parameters for multirotor aerial vehicles

Valentin Wuest, Vijay Kumar, Giuseppe Loianno

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Accurate knowledge of geometric and inertia parameters are a necessity for precise and robust control of aerial vehicles. We propose a novel filter that is able to fuse motor speed, inertia, and pose measurements to estimate the vehicle's key dynamic properties online. The presented framework is able to estimate the multirotor's moment of inertia, mass, center of mass and each sensor module's relative position. Obtaining these estimates in-flight allow the multirotor to be precisely controlled even during tasks such as load transportation or after configuration changes on scene. We provide a nonlinear observability analysis, proving that the presented model is locally weakly observable. Experimental results validate the proposed approach, showing the ability to estimate the dynamic properties accurately and demonstrate its capability to do so even while additional loads are added. The framework is flexible and can easily be adapted to a wide range of applications, including self-calibration, object grasping, and single robot or multi-robot payload transportation.

Original languageEnglish (US)
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1884-1890
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: May 20 2019May 24 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2019-May
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
Country/TerritoryCanada
CityMontreal
Period5/20/195/24/19

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Online estimation of geometric and inertia parameters for multirotor aerial vehicles'. Together they form a unique fingerprint.

Cite this