Online learning with transductive regret

Mehryar Mohri, Scott Yang

Research output: Contribution to journalConference articlepeer-review


We study online learning with the general notion of transductive regret, that is regret with modification rules applying to expert sequences (as opposed to single experts) that are representable by weighted finite-state transducers. We show how transductive regret generalizes existing notions of regret, including: (1) external regret; (2) internal regret; (3) swap regret; and (4) conditional swap regret. We present a general and efficient online learning algorithm for minimizing transductive regret. We further extend that to design efficient algorithms for the time-selection and sleeping expert settings. A by-product of our study is an algorithm for swap regret, which, under mild assumptions, is more efficient than existing ones, and a substantially more efficient algorithm for time selection swap regret.

Original languageEnglish (US)
Pages (from-to)5215-5225
Number of pages11
JournalAdvances in Neural Information Processing Systems
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Online learning with transductive regret'. Together they form a unique fingerprint.

Cite this