Operator inference with roll outs for learning reduced models from scarce and low-quality data

Wayne Isaac Tan Uy, Dirk Hartmann, Benjamin Peherstorfer

Research output: Contribution to journalArticlepeer-review

Abstract

Data-driven modeling has become a key building block in computational science and engineering. However, data that are available in science and engineering are typically scarce, often polluted with noise and affected by measurement errors and other perturbations, which makes learning the dynamics of systems challenging. In this work, we propose to combine data-driven modeling via operator inference with the dynamic training via roll outs of neural ordinary differential equations. Operator inference with roll outs inherits interpretability, scalability, and structure preservation of traditional operator inference while leveraging the dynamic training via roll outs over multiple time steps to increase stability and robustness for learning from low-quality and noisy data. Numerical experiments with data describing shallow water waves and surface quasi-geostrophic dynamics demonstrate that operator inference with roll outs provides predictive models from training trajectories even if data are sampled sparsely in time and polluted with noise of up to 10%.

Original languageEnglish (US)
Pages (from-to)224-239
Number of pages16
JournalComputers and Mathematics with Applications
Volume145
DOIs
StatePublished - Sep 1 2023

Keywords

  • Data-driven modeling
  • Model reduction
  • Scarce and noisy data
  • Scientific machine learning

ASJC Scopus subject areas

  • Modeling and Simulation
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Operator inference with roll outs for learning reduced models from scarce and low-quality data'. Together they form a unique fingerprint.

Cite this