Opposing effects of selectivity and invariance in peripheral vision

Corey M. Ziemba, Eero P. Simoncelli

Research output: Contribution to journalArticlepeer-review

Abstract

Sensory processing necessitates discarding some information in service of preserving and reformatting more behaviorally relevant information. Sensory neurons seem to achieve this by responding selectively to particular combinations of features in their inputs, while averaging over or ignoring irrelevant combinations. Here, we expose the perceptual implications of this tradeoff between selectivity and invariance, using stimuli and tasks that explicitly reveal their opposing effects on discrimination performance. We generate texture stimuli with statistics derived from natural photographs, and ask observers to perform two different tasks: Discrimination between images drawn from families with different statistics, and discrimination between image samples with identical statistics. For both tasks, the performance of an ideal observer improves with stimulus size. In contrast, humans become better at family discrimination but worse at sample discrimination. We demonstrate through simulations that these behaviors arise naturally in an observer model that relies on a common set of physiologically plausible local statistical measurements for both tasks.

Original languageEnglish (US)
Article number4597
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Opposing effects of selectivity and invariance in peripheral vision'. Together they form a unique fingerprint.

Cite this