Optical identification using imperfections in 2D materials

Yameng Cao, Alexander J. Robson, Abdullah Alharbi, Jonathan Roberts, Christopher S. Woodhead, Yasir J. Noori, Ramón Bernardo-Gavito, Davood Shahrjerdi, Utz Roedig, Vladimir I. Fal'Ko, Robert J. Young

Research output: Contribution to journalArticlepeer-review


The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.

Original languageEnglish (US)
Article number045021
Journal2D Materials
Issue number4
StatePublished - Sep 28 2017


  • optical measurement
  • photoluminescence
  • physical unclonable functions
  • security
  • transition metal dichalcogenide

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Optical identification using imperfections in 2D materials'. Together they form a unique fingerprint.

Cite this