Abstract
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
Original language | English (US) |
---|---|
Article number | 045021 |
Journal | 2D Materials |
Volume | 4 |
Issue number | 4 |
DOIs | |
State | Published - Sep 28 2017 |
Keywords
- optical measurement
- photoluminescence
- physical unclonable functions
- security
- transition metal dichalcogenide
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
Fingerprint Dive into the research topics of 'Optical identification using imperfections in 2D materials'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Optical identification using imperfections in 2D materials. / Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'Ko, Vladimir I.; Young, Robert J.
In: 2D Materials, Vol. 4, No. 4, 045021, 28.09.2017.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Optical identification using imperfections in 2D materials
AU - Cao, Yameng
AU - Robson, Alexander J.
AU - Alharbi, Abdullah
AU - Roberts, Jonathan
AU - Woodhead, Christopher S.
AU - Noori, Yasir J.
AU - Bernardo-Gavito, Ramón
AU - Shahrjerdi, Davood
AU - Roedig, Utz
AU - Fal'Ko, Vladimir I.
AU - Young, Robert J.
N1 - Funding Information: Yameng Cao Alexander J Robson Abdullah Alharbi Jonathan Roberts Christopher S Woodhead Yasir J Noori Ram�n Bernardo-Gavito Davood Shahrjerdi Utz Roedig Vladimir I Fal’ko Robert J Young Yameng Cao Alexander J Robson Abdullah Alharbi Jonathan Roberts Christopher S Woodhead Yasir J Noori Ram�n Bernardo-Gavito Davood Shahrjerdi Utz Roedig Vladimir I Fal’ko Robert J Young Physics Department, Lancaster University, Lancaster, LA1 4YB, United Kingdom Electrical and Computer Engineering, New York University, Brooklyn, New York 11201, United States of America School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, United Kingdom National Graphene Institute, The University of Manchester, Manchester, M13 9PL, United Kingdom Yameng Cao, Alexander J Robson, Abdullah Alharbi, Jonathan Roberts, Christopher S Woodhead, Yasir J Noori, Ram�n Bernardo-Gavito, Davood Shahrjerdi, Utz Roedig, Vladimir I Fal’ko and Robert J Young 2017-12-01 2017-09-28 10:38:10 cgi/release: Article released bin/incoming: New from .zip Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 EP/K50421X/1 EP/L01548X/1 National Science Foundation https://doi.org/10.13039/100000001 1638598 Royal Society https://doi.org/10.13039/501100000288 University Fellowship UF110555 University Fellowship UF160721 Air Force Office of Scientific Research https://doi.org/10.13039/100000181 FA9550-16-1-0276 yes The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting. � 2017 IOP Publishing Ltd [1] Roberts J et al 2015 Sci. Rep. 5 16456 10.1038/srep16456 Roberts J et al Sci. Rep. 5 2015 16456 [2] Gao Y, Ranasinghe D C, Al-Sarawi S F, Kavehei O and Abbott D 2016 IEEE Access 4 61–80 10.1109/ACCESS.2015.2503432 Gao Y, Ranasinghe D C, Al-Sarawi S F, Kavehei O and Abbott D IEEE Access 4 2016 61 80 [3] Pappu R, Recht B, Taylor J and Gershenfeld N 2002 Science 297 2026–30 10.1126/science.1074376 Pappu R, Recht B, Taylor J and Gershenfeld N Science 297 2002 2026 2030 [4] Anderson R J 2008 Security Engineering (New York: Wiley) Anderson R J Security Engineering 2008 [5] Rührmair U, Sehnke F, Sölter J, Dror G, Devadas S and Schmidhuber J 2010 Proc. of the 17th ACM Conf. on Computer and Communications Security (New York: ACM) pp 237–49 10.1145/1866307.1866335 Rührmair U, Sehnke F, Sölter J, Dror G, Devadas S and Schmidhuber J Proc. of the 17th ACM Conf. on Computer and Communications Security 2010 237 249 [6] Gao Y, Ranasinghe D C, Al-Sarawi S F, Kavehei O and Abbott D 2015 Sci. Rep. 5 12785 10.1038/srep12785 Gao Y, Ranasinghe D C, Al-Sarawi S F, Kavehei O and Abbott D Sci. Rep. 5 2015 12785 [7] Vatajelu E I, Natale G D and Prinetto P 2016 IEEE 34th VLSI Test Symp. pp 1–4 10.1109/VTS.2016.7477292 Vatajelu E I, Natale G D and Prinetto P IEEE 34th VLSI Test Symp. 2016 1 4 [8] Konigsmark S T C, Hwang L K, Chen D and Wong M D F 2014 19th Asia and South Pacific Design Automation Conf. pp 73–8 10.1109/ASPDAC.2014.6742869 Konigsmark S T C, Hwang L K, Chen D and Wong M D F 19th Asia and South Pacific Design Automation Conf. 2014 73 78 [9] Zhang L, Kong Z H and Chang C H 2013 IEEE Int. Symp. on Circuits and Systems pp 1444–7 10.1109/ISCAS.2013.6572128 Zhang L, Kong Z H and Chang C H IEEE Int. Symp. on Circuits and Systems 2013 1444 1447 [10] Lundie M, Sljivancanin Z and Tomic S 2015 J. Mater. Chem. C 3 7632–41 10.1039/C5TC00437C Lundie M, Sljivancanin Z and Tomic S J. Mater. Chem. 3 C 2015 7632 7641 [11] Wu S et al 2015 Nature 520 69–72 10.1038/nature14290 Wu S et al Nature 520 2015 69 72 [12] Geim a K and Grigorieva I V 2013 Nature 499 419–25 10.1038/nature12385 Geim a K and Grigorieva I V Nature 499 2013 419 425 [13] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2015 Nat. Nanotechnol. 11 37–41 10.1038/nnano.2015.242 Tran T T, Bray K, Ford M J, Toth M and Aharonovich I Nat. Nanotechnol. 11 2015 37 41 [14] Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y and Zhang X 2015 Nat. Photon. 9 733–7 10.1038/nphoton.2015.197 Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y and Zhang X Nat. Photon. 9 2015 733 737 [15] Wu Y, Tong Q, Liu G B, Yu H and Yao W 2016 Phys. Rev. B 93 045313 10.1103/PhysRevB.93.045313 Wu Y, Tong Q, Liu G B, Yu H and Yao W Phys. Rev. 93 B 045313 2016 [16] Gan X et al 2013 Appl. Phys. Lett. 103 181119 10.1063/1.4826679 Gan X et al Appl. Phys. Lett. 103 181119 2013 [17] Wu S et al 2014 2D Mater. 1 1 10.1088/2053-1583/1/1/011001 Wu S et al 2D Mater. 2053-1583 1 1 011001 2014 1 [18] Amani M et al 2015 Science 350 1065–8 10.1126/science.aad2114 Amani M et al Science 350 2015 1065 1068 [19] Wang Z et al 2016 Nat. Commun. 7 11283 10.1038/ncomms11283 Wang Z et al Nat. Commun. 7 2016 11283 [20] Alharbi A, Zahl P and Shahrjerdi D 2017 Appl. Phys. Lett. 110 033503 10.1063/1.4974046 Alharbi A, Zahl P and Shahrjerdi D Appl. Phys. Lett. 110 033503 2017 [21] Mak K F and Shan J 2016 Nat. Photon. 10 216–26 10.1038/nphoton.2015.282 Mak K F and Shan J Nat. Photon. 10 2016 216 226 [22] Baumeister P W 2014 Opt. Coat. Technol. Baumeister P W Opt. Coat. Technol. 2014 [23] Alharbi A and Shahrjerdi D 2016 Appl. Phys. Lett. 109 193502 10.1063/1.4967188 Alharbi A and Shahrjerdi D Appl. Phys. Lett. 109 193502 2016 [24] Magda G Z, Pet J, Dobrik G, Hwang C, Bir L P and Tapaszt L 2015 Sci. Rep. 5 14714 10.1038/srep14714 Magda G Z, Pet J, Dobrik G, Hwang C, Bir L P and Tapaszt L Sci. Rep. 5 2015 14714 [25] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615–22 10.1021/nl4007479 Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C Nano Lett. 13 2013 2615 2622 [26] McDonnell S, Addou R, Buie C, Wallace R M and Hinkle C L 2014 ACS Nano 8 2880–8 10.1021/nn500044q McDonnell S, Addou R, Buie C, Wallace R M and Hinkle C L ACS Nano 8 2014 2880 2888 [27] Chen X, Zhong L, Li X and Qi J 2017 Nanoscale 9 2188–94 10.1039/C6NR05710A Chen X, Zhong L, Li X and Qi J Nanoscale 9 2017 2188 2194 [28] Tedstone A A, Lewis D J and OBrien P 2016 Chem. Mater. 28 1965–74 10.1021/acs.chemmater.6b00430 Tedstone A A, Lewis D J and OBrien P Chem. Mater. 28 2016 1965 1974 [29] Tan L K, Liu B, Teng J H, Guo S, Low H Y and Loh K P 2014 Nanoscale 6 10584–8 10.1039/C4NR02451F Tan L K, Liu B, Teng J H, Guo S, Low H Y and Loh K P Nanoscale 6 2014 10584 10588 [30] Late D J, Shaikh P A, Khare R, Kashid R V, Chaudhary M, More M A and Ogale S B 2014 ACS Appl. Mater. Interfaces 6 15881–8 10.1021/am503464h Late D J, Shaikh P A, Khare R, Kashid R V, Chaudhary M, More M A and Ogale S B ACS Appl. Mater. Interfaces 6 2014 15881 15888 [31] Liu H, Antwi K K A, Chua S and Chi D 2014 Nanoscale 6 624–9 10.1039/C3NR04515C Liu H, Antwi K K A, Chua S and Chi D Nanoscale 6 2014 624 629 [32] Han Y, Hu T, Li R, Zhou J and Dong J 2015 Phys. Chem. Chem. Phys. 17 3813–9 10.1039/C4CP04319G Han Y, Hu T, Li R, Zhou J and Dong J Phys. Chem. Chem. Phys. 1463-9076 17 2015 3813 3819 [33] Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 035301 10.1103/PhysRevB.88.035301 Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V Phys. Rev. 88 B 035301 2013 [34] Lin J, Pantelides S T and Zhou W 2015 ACS Nano 9 5189–97 10.1021/acsnano.5b00554 Lin J, Pantelides S T and Zhou W ACS Nano 9 2015 5189 5197 [35] Lehtinen O et al 2015 ACS Nano 9 3274–83 10.1021/acsnano.5b00410 Lehtinen O et al ACS Nano 9 2015 3274 3283 [36] Azizi A, Zou X, Ercius P, Zhang Z, Elas A L, Perea-Lpez N, Stone G, Terrones M, Yakobson B I and Alem N 2014 Nat. Commun. 5 4867 10.1038/ncomms5867 Azizi A, Zou X, Ercius P, Zhang Z, Elas A L, Perea-Lpez N, Stone G, Terrones M, Yakobson B I and Alem N Nat. Commun. 5 2014 4867 [37] Zou X, Liu Y and Yakobson B I 2013 Nano Lett. 13 253–8 10.1021/nl3040042 Zou X, Liu Y and Yakobson B I Nano Lett. 13 2013 253 258 [38] Komsa H P and Krasheninnikov A V 2012 Phys. Rev. B 86 241201 10.1103/PhysRevB.86.241201 Komsa H P and Krasheninnikov A V Phys. Rev. 86 B 241201 2012 [39] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802 10.1103/PhysRevLett.113.076802 Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F Phys. Rev. Lett. 113 076802 2014 [40] Ugeda M M et al 2014 Nat. Mater. 13 1091–5 10.1038/nmat4061 Ugeda M M et al Nat. Mater. 13 2014 1091 1095 [41] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569–76 10.1021/nl501988y Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T Nano Lett. 14 2014 5569 5576 [42] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F 2015 Phys. Rev. Lett. 115 126802 10.1103/PhysRevLett.115.126802 Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F Phys. Rev. Lett. 115 126802 2015 [43] Dolui K, Rungger I and Sanvito S 2013 Phys. Rev. B 87 165402 10.1103/PhysRevB.87.165402 Dolui K, Rungger I and Sanvito S Phys. Rev. 87 B 165402 2013 [44] Buscema M, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Res. 7 561–71 10.1007/s12274-014-0424-0 Buscema M, Steele G A, van der Zant H S J and Castellanos-Gomez A Nano Res. 7 2014 561 571 [45] Cadiz F et al 2016 2D Mater. 3 045008 10.1088/2053-1583/3/4/045008 Cadiz F et al 2D Mater. 2053-1583 3 4 045008 2016 [46] Govind Rajan A, Warner J H, Blankschtein D and Strano M S 2016 ACS Nano 10 4330–44 10.1021/acsnano.5b07916 Govind Rajan A, Warner J H, Blankschtein D and Strano M S ACS Nano 10 2016 4330 4344 [47] Noori Y J, Cao Y, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P and Young R J 2016 ACS Photonics 3 2515–20 10.1021/acsphotonics.6b00779 Noori Y J, Cao Y, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P and Young R J ACS Photonics 3 2016 2515 2520 [48] Woodhead C S, Roberts J, Noori Y J, Cao Y, Bernardo-Gavito R, Tovee P, Kozikov A, Novoselov K and Young R J 2016 2D Mater. 4 015032 10.1088/2053-1583/4/1/015032 Woodhead C S, Roberts J, Noori Y J, Cao Y, Bernardo-Gavito R, Tovee P, Kozikov A, Novoselov K and Young R J 2D Mater. 4 015032 2016 [49] Favron A, Gaufres E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S and Martel R 2015 Nat. Mater. 14 826–32 10.1038/nmat4299 Favron A, Gaufres E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S and Martel R Nat. Mater. 14 2015 826 832 [50] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739–44 10.1021/ja805545x Li Y, Zhou Z, Zhang S and Chen Z J. Am. Chem. Soc. 130 2008 16739 16744 [51] Lee G H et al 2015 ACS Nano 9 7019–26 10.1021/acsnano.5b01341 Lee G H et al ACS Nano 9 2015 7019 7026 [52] Gao J, Li B, Tan J, Chow P, Lu T M and Koratkar N 2016 ACS Nano 10 2628–35 10.1021/acsnano.5b07677 Gao J, Li B, Tan J, Chow P, Lu T M and Koratkar N ACS Nano 10 2016 2628 2635 [53] Zhang Y et al 2013 ACS Nano 7 8963–71 10.1021/nn403454e Zhang Y et al ACS Nano 7 2013 8963 8971 [54] Ly T H et al 2014 ACS Nano 8 11401–8 10.1021/nn504470q Ly T H et al ACS Nano 8 2014 11401 11408
PY - 2017/9/28
Y1 - 2017/9/28
N2 - The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
AB - The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
KW - optical measurement
KW - photoluminescence
KW - physical unclonable functions
KW - security
KW - transition metal dichalcogenide
UR - http://www.scopus.com/inward/record.url?scp=85056881755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056881755&partnerID=8YFLogxK
U2 - 10.1088/2053-1583/aa8b4d
DO - 10.1088/2053-1583/aa8b4d
M3 - Article
AN - SCOPUS:85056881755
VL - 4
JO - 2D Materials
JF - 2D Materials
SN - 2053-1583
IS - 4
M1 - 045021
ER -