TY - GEN
T1 - OPTIMAL ALGORITHM FOR COMPUTING THE MINIMUM VERTEX DISTANCE BETWEEN TWO CROSSING CONVEX POLYGONS.
AU - Toussaint, Godfried T.
PY - 1984
Y1 - 1984
N2 - Let P equals left brace p//1,p//2,. . . ,p//m right brace and Q equals left brace q//1,q//2,. . . ,q//n right brace be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimal 0(m plus n) algorithm is presented for computing the minimum euclidean distance between a vertex p//i in P and a vertex q//j in Q.
AB - Let P equals left brace p//1,p//2,. . . ,p//m right brace and Q equals left brace q//1,q//2,. . . ,q//n right brace be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimal 0(m plus n) algorithm is presented for computing the minimum euclidean distance between a vertex p//i in P and a vertex q//j in Q.
UR - http://www.scopus.com/inward/record.url?scp=0021627238&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021627238&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0021627238
SN - 0818605456
T3 - Proceedings - International Conference on Pattern Recognition
SP - 465
EP - 467
BT - Proceedings - International Conference on Pattern Recognition
PB - IEEE
ER -