TY - GEN

T1 - OPTIMAL ALGORITHM FOR COMPUTING THE MINIMUM VERTEX DISTANCE BETWEEN TWO CROSSING CONVEX POLYGONS.

AU - Toussaint, Godfried T.

PY - 1984

Y1 - 1984

N2 - Let P equals left brace p//1,p//2,. . . ,p//m right brace and Q equals left brace q//1,q//2,. . . ,q//n right brace be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimal 0(m plus n) algorithm is presented for computing the minimum euclidean distance between a vertex p//i in P and a vertex q//j in Q.

AB - Let P equals left brace p//1,p//2,. . . ,p//m right brace and Q equals left brace q//1,q//2,. . . ,q//n right brace be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimal 0(m plus n) algorithm is presented for computing the minimum euclidean distance between a vertex p//i in P and a vertex q//j in Q.

UR - http://www.scopus.com/inward/record.url?scp=0021627238&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021627238&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:0021627238

SN - 0818605456

T3 - Proceedings - International Conference on Pattern Recognition

SP - 465

EP - 467

BT - Proceedings - International Conference on Pattern Recognition

PB - IEEE

ER -