Optimal approximations of coupling in multidisciplinary models

Ricardo Baptista, Youssef Marzouk, Karen Willcox, Benjamin Peherstorfer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Design of complex engineering systems requires coupled analyses of the multiple disciplines affecting system performance. The coupling among disciplines typically contributes significantly to the computational cost of analyzing the system, and can become particularly burdensome when coupled analyses are embedded within a design or optimization loop. In many cases, disciplines may be weakly coupled, so that some of the coupling or interaction terms can be neglected without significantly impacting the accuracy of the system output. However, typical practice derives such approximations in an ad hoc manner using expert opinion and domain experience. This paper proposes a new approach that formulates an optimization problem to find a model that optimally balances accuracy of the model outputs with the sparsity of the discipline couplings. An adaptive sequential Monte Carlo sampling-based technique is used to efficiently search the combinatorial model space of different discipline couplings. Finally, an algorithm for optimal model selection is presented and applied to identify the important discipline couplings in a fire detection satellite model and a turbine engine cycle analysis model.

Original languageEnglish (US)
Title of host publication58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624104534
DOIs
StatePublished - 2017
Event58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017 - Grapevine, United States
Duration: Jan 9 2017Jan 13 2017

Publication series

Name58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017

Conference

Conference58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017
CountryUnited States
CityGrapevine
Period1/9/171/13/17

ASJC Scopus subject areas

  • Mechanics of Materials
  • Architecture
  • Civil and Structural Engineering
  • Building and Construction

Fingerprint Dive into the research topics of 'Optimal approximations of coupling in multidisciplinary models'. Together they form a unique fingerprint.

Cite this