Optimization for Amortized Inverse Problems

Tianci Liu, Tong Yang, Quan Zhang, Qi Lei

Research output: Contribution to journalConference articlepeer-review


Incorporating a deep generative model as the prior distribution in inverse problems has established substantial success in reconstructing images from corrupted observations. Notwithstanding, the existing optimization approaches use gradient descent largely without adapting to the non-convex nature of the problem and can be sensitive to initial values, impeding further performance improvement. In this paper, we propose an efficient amortized optimization scheme for inverse problems with a deep generative prior. Specifically, the optimization task with high degrees of difficulty is decomposed into optimizing a sequence of much easier ones. We provide a theoretical guarantee of the proposed algorithm and empirically validate it on different inverse problems. As a result, our approach outperforms baseline methods qualitatively and quantitatively by a large margin.

Original languageEnglish (US)
Pages (from-to)21794-21812
Number of pages19
JournalProceedings of Machine Learning Research
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability


Dive into the research topics of 'Optimization for Amortized Inverse Problems'. Together they form a unique fingerprint.

Cite this