TY - GEN
T1 - Optimized amplify-and-forward relaying for vehicular ad-hoc networks
AU - I̊lhan, Haci
AU - Altunbaş, I̊brahim
AU - Uysal, Murat
PY - 2008
Y1 - 2008
N2 - Cooperative communication techniques promise the advantages of MIMO (multi-input multi-output) communications for wireless scenarios with single-antenna terminals. In this paper, we investigate the performance of a vehicle-to-vehicle cooperative scheme where another vehicle in the vicinity of the source vehicle acts as a relay. The underlying source-to-relay, relay-to-destination, and source-to-destination links are modeled as cascaded (double) Rayleigh fading. This statistical model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatterers around the two mobile terminals. We derive a pairwise error probability (PEP) expression for the inter-vehicular cooperative scheme under consideration and show that the full distributed spatial diversity is extracted. Based on the derived PEP expressions, we obtain union bounds on the bit error rate performance which are then minimized to optimally allocate power between broadcasting and relaying phases. Optimum power allocation brings performance gains up to 3dB depending on the relay location and deployed modulation scheme.
AB - Cooperative communication techniques promise the advantages of MIMO (multi-input multi-output) communications for wireless scenarios with single-antenna terminals. In this paper, we investigate the performance of a vehicle-to-vehicle cooperative scheme where another vehicle in the vicinity of the source vehicle acts as a relay. The underlying source-to-relay, relay-to-destination, and source-to-destination links are modeled as cascaded (double) Rayleigh fading. This statistical model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatterers around the two mobile terminals. We derive a pairwise error probability (PEP) expression for the inter-vehicular cooperative scheme under consideration and show that the full distributed spatial diversity is extracted. Based on the derived PEP expressions, we obtain union bounds on the bit error rate performance which are then minimized to optimally allocate power between broadcasting and relaying phases. Optimum power allocation brings performance gains up to 3dB depending on the relay location and deployed modulation scheme.
UR - http://www.scopus.com/inward/record.url?scp=58149141366&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149141366&partnerID=8YFLogxK
U2 - 10.1109/VETECF.2008.175
DO - 10.1109/VETECF.2008.175
M3 - Conference contribution
AN - SCOPUS:58149141366
SN - 9781424417223
T3 - IEEE Vehicular Technology Conference
BT - The 68th IEEE Vehicular Technology Conference, VTC 2008-Fall
T2 - 68th Semi-Annual IEEE Vehicular Technology, VTC 2008-Fall, Conference
Y2 - 21 September 2008 through 24 September 2008
ER -