TY - JOUR
T1 - Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β's closing
AU - Radhakrishnan, Ravi
AU - Schlick, Tamar
PY - 2004/4/20
Y1 - 2004/4/20
N2 - Our application of transition path sampling to a complex biomolecular system in explicit solvent, the closing transition of DNA polymerase β, unravels atomic and energetic details of the conformational change that precedes the chemical reaction of nucleotide incorporation. The computed reaction profile offers detailed mechanistic insights into, as well as kinetic information on, the complex process essential for DNA synthesis and repair. The five identified transition states extend available experimental and modeling data by revealing highly cooperative dynamics and critical roles of key residues (Arg-258, Phe-272, Asp-192, and Tyr-271) in the enzyme's function. The collective cascade of these sequential conformational changes brings the DNA/ DNA polymerase β system to a state nearly competent for the chemical reaction and suggests how subtle residue motions and conformational rate-limiting steps affect reaction efficiency and fidelity; this complex system of checks and balances directs the system to the chemical reaction and likely helps the enzyme discriminate the correct from the incorrect incoming nucleotide. Together with the chemical reaction, these conformational features may be central to the dual nature of polymerases, requiring specificity (for correct nucleotide selection) as well as versatility (to accommodate different templates at every step) to maintain overall fidelity. Besides leading to these biological findings, our developed protocols open the door to other applications of transition path sampling to long-time, large-scale biomolecular reactions.
AB - Our application of transition path sampling to a complex biomolecular system in explicit solvent, the closing transition of DNA polymerase β, unravels atomic and energetic details of the conformational change that precedes the chemical reaction of nucleotide incorporation. The computed reaction profile offers detailed mechanistic insights into, as well as kinetic information on, the complex process essential for DNA synthesis and repair. The five identified transition states extend available experimental and modeling data by revealing highly cooperative dynamics and critical roles of key residues (Arg-258, Phe-272, Asp-192, and Tyr-271) in the enzyme's function. The collective cascade of these sequential conformational changes brings the DNA/ DNA polymerase β system to a state nearly competent for the chemical reaction and suggests how subtle residue motions and conformational rate-limiting steps affect reaction efficiency and fidelity; this complex system of checks and balances directs the system to the chemical reaction and likely helps the enzyme discriminate the correct from the incorrect incoming nucleotide. Together with the chemical reaction, these conformational features may be central to the dual nature of polymerases, requiring specificity (for correct nucleotide selection) as well as versatility (to accommodate different templates at every step) to maintain overall fidelity. Besides leading to these biological findings, our developed protocols open the door to other applications of transition path sampling to long-time, large-scale biomolecular reactions.
UR - http://www.scopus.com/inward/record.url?scp=1942437505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1942437505&partnerID=8YFLogxK
U2 - 10.1073/pnas.0308585101
DO - 10.1073/pnas.0308585101
M3 - Article
C2 - 15069184
AN - SCOPUS:1942437505
SN - 0027-8424
VL - 101
SP - 5970
EP - 5975
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 16
ER -