Order-aware generative modeling using the 3D-craft dataset

Zhuoyuan Chen, Kavya Srinet, Charles R. Qi, Haoqi Fan, Jerry Ma, Larry Zitnick, Demi Guo, Tong Xiao, Saining Xie, Xinlei Chen, Arthur Szlam, Shubham Tulsiani, Haonan Yu, Jonathan Gray

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we study the problem of sequentially building houses in the game of Minecraft, and demonstrate that learning the ordering can make for more effective autoregressive models. Given a partially built house made by a human player, our system tries to place additional blocks in a human-like manner to complete the house. We introduce a new dataset, HouseCraft, for this new task. HouseCraft contains the sequential order in which 2,500 Minecraft houses were built from scratch by humans. The human action sequences enable us to learn an order-aware generative model called Voxel-CNN. In contrast to many generative models where the sequential generation ordering either does not matter (e.g. holistic generation with GANs), or is manually/arbitrarily set by simple rules (e.g. raster-scan order), our focus is on an ordered generation that imitates humans. To evaluate if a generative model can accurately predict human-like actions, we propose several novel quantitative metrics. We demonstrate that our Voxel-CNN model is simple and effective at this creative task, and can serve as a strong baseline for future research in this direction. The HouseCraft dataset and code with baseline models will be made publicly available.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1764-1773
Number of pages10
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Order-aware generative modeling using the 3D-craft dataset'. Together they form a unique fingerprint.

Cite this