TY - JOUR
T1 - Orientation transfer in vernier and stereoacuity training
AU - Snell, Nathaniel
AU - Kattner, Florian
AU - Rokers, Bas
AU - Green, C. Shawn
N1 - Publisher Copyright:
© 2015 Snell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas-in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks - vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas.
AB - Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas-in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks - vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas.
UR - http://www.scopus.com/inward/record.url?scp=84957602207&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957602207&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0145770
DO - 10.1371/journal.pone.0145770
M3 - Article
C2 - 26700311
AN - SCOPUS:84957602207
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 12
M1 - e0145770
ER -