TY - GEN
T1 - Overcoming Directional Deafness in High Frequency Sidelink Communications
AU - Srivastava, Ashutosh
AU - Goyal, Sanjay
AU - Salim, Umer
AU - Liu, Pei
AU - Pragada, Ravikumar
AU - Panwar, Shivendra S.
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Device-to-device (D2D) communication using 5G New Radio (NR) sidelink (SL) is envisioned to be a key enabler of high speed, low latency applications, with automated driving being the prime use case. To meet the high data rate requirements, it is essential for SL devices to be able to operate in mmWave/sub-THz frequencies where bandwidth is abundant. Consequently, several enhancements will be needed to the current version of NR SL, which is mainly designed for sub-6 GHz frequencies. Beamforming based highly directional transmission/reception used at high carrier frequencies result in directional deafness in other directions. For SL UE autonomous resource allocation, termed as Mode 2 of NR SL in 3GPP, this results in a UE's inability to detect transmissions not aligned to its primary direction of reception, which leads to high packet errors. In this paper, we focus on system wide performance of 3GPP based NR SL Mode 2 resource allocation for directional systems at mmWave/sub-THz frequencies. We propose a composite strategy that comprises paired SL control transmission and sensing, whereby SL UEs transmit and receive the SL control information in an additional 'paired' direction, directly opposite to their intended direction of transmission. This helps eliminate hidden node interference while avoiding too many exposed nodes. System level simulations in NR V2X highway scenarios show significant performance improvement of the proposed scheme over conventional solutions like omnidirectional or directional transmission/reception of SL control information.
AB - Device-to-device (D2D) communication using 5G New Radio (NR) sidelink (SL) is envisioned to be a key enabler of high speed, low latency applications, with automated driving being the prime use case. To meet the high data rate requirements, it is essential for SL devices to be able to operate in mmWave/sub-THz frequencies where bandwidth is abundant. Consequently, several enhancements will be needed to the current version of NR SL, which is mainly designed for sub-6 GHz frequencies. Beamforming based highly directional transmission/reception used at high carrier frequencies result in directional deafness in other directions. For SL UE autonomous resource allocation, termed as Mode 2 of NR SL in 3GPP, this results in a UE's inability to detect transmissions not aligned to its primary direction of reception, which leads to high packet errors. In this paper, we focus on system wide performance of 3GPP based NR SL Mode 2 resource allocation for directional systems at mmWave/sub-THz frequencies. We propose a composite strategy that comprises paired SL control transmission and sensing, whereby SL UEs transmit and receive the SL control information in an additional 'paired' direction, directly opposite to their intended direction of transmission. This helps eliminate hidden node interference while avoiding too many exposed nodes. System level simulations in NR V2X highway scenarios show significant performance improvement of the proposed scheme over conventional solutions like omnidirectional or directional transmission/reception of SL control information.
KW - 3GPP NR
KW - Resource Allocation
KW - Sidelink Mode 2
KW - mmWave
KW - sub-THz
UR - http://www.scopus.com/inward/record.url?scp=85137842446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137842446&partnerID=8YFLogxK
U2 - 10.1109/VTC2022-Spring54318.2022.9860351
DO - 10.1109/VTC2022-Spring54318.2022.9860351
M3 - Conference contribution
AN - SCOPUS:85137842446
T3 - IEEE Vehicular Technology Conference
BT - 2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring
Y2 - 19 June 2022 through 22 June 2022
ER -